04 LRU 缓存淘汰算法

本文为个人学习摘要笔记。 原文地址:聊聊缓存淘汰算法-LRU 实现原理

我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来。缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据。常用淘汰算法有 LRU,LFU,FIFO,本文说明 LRU 算法。

LRU 算法

LRU 即 Least Recently Used,这种算法认为最近使用的数据是热门数据,下一次很大概率将会再次被使用。而最近很少被使用的数据,很大概率下一次不再用到。当缓存容量的满时候,优先淘汰最近很少使用的数据。

假设现在缓存内部数据如下图,当调用缓存获取 key=1 的数据,LRU 算法需要将 1 这个节点移动到头结点,其余节点不变:

缓存数据

然后我们插入一个 key=8 节点,此时缓存容量到达上限,所以加入之前需要先删除数据,然后再将数据添加到头结点。由于每次查询都会将数据移动到头结点,未被查询的数据就将会下沉到尾部节点,尾部的数据就可以认为是最少被访问的数据,所以删除尾结点的数据。

插入数据

这里总结一下 LRU 算法具体步骤:

  1. 新数据直接插入到列表头部

  2. 缓存数据被命中,将数据移动到列表头部

  3. 缓存已满的时候,移除列表尾部数据。

LRU 算法实现

上面例子中可以看到,LRU 算法需要添加头节点,删除尾结点。而链表添加节点/删除节点时间复杂度 O(1),非常适合当做存储缓存数据容器。但是不能使用普通的单向链表,单向链表有几点劣势:

  1. 每次获取任意节点数据,都需要从头结点遍历下去,这就导致获取节点复杂度为 O(N)。

  2. 移动中间节点到头结点,我们需要知道中间节点前一个节点的信息,单向链表就不得不再次遍历获取信息。

针对以上问题,可以结合散列表解决。使用散列表存储节点,获取节点的复杂度将会降低为 O(1)。节点移动问题可以在节点中再增加前驱指针,记录上一个节点信息,这样链表就从单向链表变成了双向链表。

综上使用双向链表加散列表结合体,数据结构如图所示:

双向链表加散列表

在双向链表中特意增加两个『哨兵』节点,不用来存储任何数据。使用哨兵节点,增加/删除节点的时候就可以不用考虑边界节点不存在情况,简化编程难度,降低代码复杂度。

LRU 算法实现代码如下,为了简化 key ,val 都认为 int 类型:

public class LRUCache {
Entry head, tail;
int capacity;
int size;
Map<Integer, Entry> cache;
public LRUCache(int capacity) {
this.capacity = capacity;
// 初始化链表
initLinkedList();
size = 0;
cache = new HashMap<>(capacity + 2);
}
/**
* 如果节点不存在,返回 -1.如果存在,将节点移动到头结点,并返回节点的数据。
*
* @param key
* @return
*/
public int get(int key) {
Entry node = cache.get(key);
if (node == null) {
return -1;
}
// 存在移动节点
moveToHead(node);
return node.value;
}
/**
* 将节点加入到头结点,如果容量已满,将会删除尾结点
*
* @param key
* @param value
*/
public void put(int key, int value) {
Entry node = cache.get(key);
if (node != null) {
node.value = value;
moveToHead(node);
return;
}
// 不存在。先加进去,再移除尾结点
// 此时容量已满 删除尾结点
if (size == capacity) {
Entry lastNode = tail.pre;
deleteNode(lastNode);
cache.remove(lastNode.key);
size--;
}
// 加入头结点
Entry newNode = new Entry();
newNode.key = key;
newNode.value = value;
addNode(newNode);
cache.put(key, newNode);
size++;
}
private void moveToHead(Entry node) {
// 首先删除原来节点的关系
deleteNode(node);
addNode(node);
}
private void addNode(Entry node) {
head.next.pre = node;
node.next = head.next;
node.pre = head;
head.next = node;
}
private void deleteNode(Entry node) {
node.pre.next = node.next;
node.next.pre = node.pre;
}
public static class Entry {
public Entry pre;
public Entry next;
public int key;
public int value;
public Entry(int key, int value) {
this.key = key;
this.value = value;
}
public Entry() {
}
}
private void initLinkedList() {
head = new Entry();
tail = new Entry();
head.next = tail;
tail.pre = head;
}
public static void main(String[] args) {
LRUCache cache = new LRUCache(2);
cache.put(1, 1);
cache.put(2, 2);
System.out.println(cache.get(1));
cache.put(3, 3);
System.out.println(cache.get(2));
}
}

LRU 算法分析

缓存命中率是缓存系统的非常重要指标,如果缓存系统的缓存命中率过低,将会导致查询回流到数据库,导致数据库的压力升高。

结合以上分析 LRU 算法优缺点:

  • LRU 算法优势在于算法实现难度不大,对于对于热点数据,LRU 效率会很好。

  • LRU 算法劣势在于对于偶发的批量操作,比如说批量查询历史数据,就有可能使缓存中热门数据被这些历史数据替换,造成缓存污染,导致缓存命中率下降,减慢了正常数据查询。

LRU 算法改进方案

以下方案来源与 MySQL InnoDB LRU 改进算法,将链表拆分成两部分,分为热数据区,与冷数据区,如图所示:

MySQL InnoDB LRU

改进之后算法流程将会变成下面一样:

  1. 访问数据如果位于热数据区,与之前 LRU 算法一样,移动到热数据区的头结点。

  2. 插入数据时,若缓存已满,淘汰尾结点的数据。然后将数据插入冷数据区的头结点。

  3. 处于冷数据区的数据每次被访问需要做如下判断:

    • 若该数据已在缓存中超过指定时间,比如说 1s,则移动到热数据区的头结点。

    • 若该数据存在在时间小于指定的时间,则位置保持不变。

对于偶发的批量查询,数据仅仅只会落入冷数据区,然后很快就会被淘汰出去。热门数据区的数据将不会受到影响,这样就解决了 LRU 算法缓存命中率下降的问题。